
python-pachyderm

Joe Doliner

Nov 01, 2021

DOCS

1 Overview 1
1.1 python_pachyderm . 1

2 Links 37

3 Indices and tables 39

Python Module Index 41

Index 43

i

ii

CHAPTER

ONE

OVERVIEW

python-pachyderm is a Python client that interacts with Pachyderm, a tool for version-controlled, automated, end-to-end
data pipelines for data science. If you’re not familiar with Pachyderm or its value, check out that first!

1.1 python_pachyderm

1.1.1 Mixins

Information

Exposes a mixin for each pachyderm service. These mixins should not be used directly; instead, you should use
python_pachyderm.Client(). The mixins exist exclusively in order to provide better code organization (because
we have several mixins, rather than one giant Client class.)

python_pachyderm.mixin.admin

class python_pachyderm.mixin.admin.AdminMixin

Methods

extract([url, no_objects, no_repos, ...]) Extracts cluster data for backup.
extract_pipeline(pipeline_name) Extracts a pipeline for backup.
inspect_cluster() Inspects a cluster.
restore(requests) Restores a cluster.

extract(url=None, no_objects=None, no_repos=None, no_pipelines=None, no_auth=None,
no_enterprise=None)

Extracts cluster data for backup. Yields Op objects.

Parameters
url [str, optional] A string specifying an object storage URL. If set, data will be extracted to

this URL rather than returned.

no_objects [bool, optional] If true, will cause extract to omit objects (and tags.)

no_repos [bool, optional] If true, will cause extract to omit repos, commits and branches.

no_pipelines [bool, optional] If true, will cause extract to omit pipelines.

1

https://www.pachyderm.com/

python-pachyderm

no_auth [bool, optional] If true, will cause extract to omit acls, tokens, etc.

no_enterprise [bool, optional] If true, will cause extract to omit any enterprise activation
key (which may break auth restore)

extract_pipeline(pipeline_name)
Extracts a pipeline for backup. Returns an Op object.

Parameters
pipeline_name [str] The pipeline name to extract.

inspect_cluster()
Inspects a cluster. Returns a ClusterInfo object.

restore(requests)
Restores a cluster.

Parameters
requests [Iterator[RestoreRequest protobufs]] A generator of RestoreRequest objects.

python_pachyderm.mixin.auth

class python_pachyderm.mixin.auth.AuthMixin

Methods

activate_auth (subject[, github_token, ...]) Activates auth, creating an initial set of admins.
authenticate_github(github_token) Authenticates a GitHub user to the Pachyderm clus-

ter.
authenticate_id_token(id_token) Authenticates a user to the Pachyderm cluster using

an ID token issued by the OIDC provider.
authenticate_oidc(oidc_state) Authenticates a user to the Pachyderm cluster via

OIDC.
authenticate_one_time_password(one_time_password)Authenticates a user to the Pachyderm cluster using

a one-time password.
authorize(repo, scope) Authorizes the user to a given repo/scope.
deactivate_auth () Deactivates auth, removing all ACLs, tokens, and ad-

mins from the Pachyderm cluster and making all data
publicly accessible.

extend_auth_token(token, ttl) Extends an existing auth token.
extract_auth_tokens() This maps to an internal function that is only used for

migration.
get_acl(repo) Gets the ACL of a repo.
get_admins() Returns a list of strings specifying the cluster admins.
get_auth_configuration() Gets the auth configuration.
get_auth_token(subject[, ttl]) Gets an auth token for a subject.
get_cluster_role_bindings() Returns the current set of cluster role bindings.
get_groups([username]) Gets which groups the given username belongs to.
get_oidc_login() Returns the OIDC login configuration.
get_one_time_password([subject, ttl]) If this Client is authenticated as an admin, you can

generate a one-time password for any given subject.
get_scope(username, repos) Gets the auth scope.

continues on next page

2 Chapter 1. Overview

python-pachyderm

Table 2 – continued from previous page
get_users(group) Gets which users below to the given.
modify_admins([add, remove]) Adds and/or removes admins.
modify_cluster_role_binding(principal[,
roles])

Sets the list of admin roles for a principal.

modify_members(group[, add, remove]) Adds and/or removes members of a group.
restore_auth_token([token]) This maps to an internal function that is only used for

migration.
revoke_auth_token(token) Revokes an auth token.
set_acl(repo, entries) Sets the ACL of a repo.
set_auth_configuration(configuration) Set the auth configuration.
set_groups_for_user(username, groups) Sets the group membership for a user.
set_scope(username, repo, scope) Set the auth scope.
who_am_i() Returns info about the user tied to this Client.

activate_auth(subject, github_token=None, root_token=None)
Activates auth, creating an initial set of admins. Returns a string that can be used for making authenticated
requests.

Parameters
subject [str] If set to a github user (i.e. it has a ‘github:’ prefix or no prefix) then Pachyderm

will confirm that it matches the user associated with github_token. If set to a robot user
(i.e. it has a ‘robot:’ prefix), then Pachyderm will generate a new token for the robot user;
this token will be the only way to administer this cluster until more admins are added.

github_token [str, optional] This is the token returned by GitHub and used to authenticate
the caller. When Pachyderm is deployed locally, setting this value to a given string will
automatically authenticate the caller as a GitHub user whose username is that string (un-
less this “looks like” a GitHub access code, in which case Pachyderm does retrieve the
corresponding GitHub username)

root_token [str, optional] Unused

authenticate_github(github_token)
Authenticates a GitHub user to the Pachyderm cluster. Returns a string that can be used for making authen-
ticated requests.

Parameters
github_token: str This is the token returned by GitHub and used to authenticate the caller.

When Pachyderm is deployed locally, setting this value to a given string will automati-
cally authenticate the caller as a GitHub user whose username is that string (unless this
“looks like” a GitHub access code, in which case Pachyderm does retrieve the correspond-
ing GitHub username.)

authenticate_id_token(id_token)
Authenticates a user to the Pachyderm cluster using an ID token issued by the OIDC provider. The token
must include the Pachyderm client_id in the set of audiences to be valid. Returns a string that can be used
for making authenticated requests.

Parameters
id_token [str] The ID token.

authenticate_oidc(oidc_state)
Authenticates a user to the Pachyderm cluster via OIDC. Returns a string that can be used for making
authenticated requests.

1.1. python_pachyderm 3

python-pachyderm

Parameters
oidc_state [str] The OIDC state token.

authenticate_one_time_password(one_time_password)
Authenticates a user to the Pachyderm cluster using a one-time password. Returns a string that can be used
for making authenticated requests.

Parameters
one_time_password [str] This is a short-lived, one-time-use password generated by Pachy-

derm, for the purpose of propagating authentication to new clients (e.g. from the dash to
pachd.)

authorize(repo, scope)
Authorizes the user to a given repo/scope. Return a bool specifying if the caller has at least scope-level
access to repo.

Parameters
repo [str] The repo name that the caller wants access to.

scope [int] The access level that the caller needs to perform an action. See the Scope enum
for variants.

deactivate_auth()
Deactivates auth, removing all ACLs, tokens, and admins from the Pachyderm cluster and making all data
publicly accessible.

extend_auth_token(token, ttl)
Extends an existing auth token.

Parameters
token [str] Indicates the Pachyderm token whose TTL is being extended.

ttl [int] Indicates the approximate remaining lifetime of this token, in seconds.

extract_auth_tokens()
This maps to an internal function that is only used for migration. Pachyderm’s extract and restore func-
tionality calls extract_auth_tokens and restore_auth_tokens to move Pachyderm tokens between clusters
during migration. Currently this function is only used for Pachyderm internals, so we’re avoiding sup-
port for this function in python-pachyderm client until we find a use for it (feel free to file an issue in
github.com/pachyderm/pachyderm).

get_acl(repo)
Gets the ACL of a repo. Returns a GetACLResponse object.

Parameters
repo [str] The repo to get an ACL for.

get_admins()
Returns a list of strings specifying the cluster admins.

get_auth_configuration()
Gets the auth configuration. Returns an AuthConfig object.

get_auth_token(subject, ttl=None)
Gets an auth token for a subject. Returns an GetAuthTokenResponse object.

Parameters
subject [str] The returned token will allow the caller to access resources as this subject.

4 Chapter 1. Overview

python-pachyderm

ttl [int, optional] Indicates the approximate remaining lifetime of this token, in seconds.

get_cluster_role_bindings()
Returns the current set of cluster role bindings.

get_groups(username=None)
Gets which groups the given username belongs to. Returns a list of strings.

Parameters
username [str, optional] The username.

get_oidc_login()
Returns the OIDC login configuration.

get_one_time_password(subject=None, ttl=None)
If this Client is authenticated as an admin, you can generate a one-time password for any given subject.
If the caller is not an admin or the subject is not set, a one-time password will be returned for logged-in
subject. Returns a string.

Parameters
subject [str, optional] The subject.

ttl [int, optional] Indicates the approximate remaining lifetime of this token, in seconds.

get_scope(username, repos)
Gets the auth scope. Returns a list of Scope objects.

Parameters
username [str] A string specifying the principal (some of which belong to robots rather than

users, but the name is preserved for now to provide compatibility with the pachyderm dash)
whose access level is queried. To query the access level of a robot user, the caller must
prefix username with “robot:”. If username has no prefix (i.e. no “:”), then it’s assumed to
be a github user’s principal.

repos [List[str]] A list of strings specifying the objects to which `username`s access level is
being queried

get_users(group)
Gets which users below to the given. Returns a list of strings.

Parameters
group [str] The group to list users for.

modify_admins(add=None, remove=None)
Adds and/or removes admins.

Parameters
add [List[str], optional] A list of strings specifying admins to add.

remove [List[str], optional] A list of strings specifying admins to remove.

modify_cluster_role_binding(principal, roles=None)
Sets the list of admin roles for a principal.

Parameters
principal [str, optional] A string specifying the principal.

roles [ClusterRoles protobuf] A ClusterRoles object specifying cluster-wide permissions the
principal has. If unspecified, all roles are revoked for the principal.

1.1. python_pachyderm 5

python-pachyderm

modify_members(group, add=None, remove=None)
Adds and/or removes members of a group.

Parameters
group [str] The group to modify.

add [List[str], optional] A list of strings specifying members to add.

remove [List[str], optional] A list of strings specifying members to remove.

restore_auth_token(token=None)
This maps to an internal function that is only used for migration. Pachyderm’s extract and restore func-
tionality calls extract_auth_tokens and restore_auth_tokens to move Pachyderm tokens between clusters
during migration. Currently this function is only used for Pachyderm internals, so we’re avoiding sup-
port for this function in python-pachyderm client until we find a use for it (feel free to file an issue in
github.com/pachyderm/pachyderm).

revoke_auth_token(token)
Revokes an auth token.

Parameters
token [str] Indicates the Pachyderm token that is being revoked.

set_acl(repo, entries)
Sets the ACL of a repo.

Parameters
repo [str] The repo to set an ACL on.

entries [List[ACLEntry protobuf]] A list of ACLEntry objects.

set_auth_configuration(configuration)
Set the auth configuration.

Parameters
config [AuthConfig protobuf] The auth configuration.

set_groups_for_user(username, groups)
Sets the group membership for a user.

Parameters
username [str] The username.

groups [List[str]] The groups to add username to.

set_scope(username, repo, scope)
Set the auth scope.

Parameters
username [str] A string specifying the principal (some of which belong to robots rather than

users, but the name is preserved for now to provide compatibility with the pachyderm dash)
whose access level is queried. To query the access level of a robot user, the caller must
prefix username with “robot:”. If ‘username’ has no prefix (i.e. no “:”), then it’s assumed
to be a github user’s principal.

repo [str] A string specifying the object to which `username`s access level is being
granted/revoked.

scope [int] The access level that username will now have. See the Scope enum for variants.

6 Chapter 1. Overview

python-pachyderm

who_am_i()
Returns info about the user tied to this Client.

python_pachyderm.mixin.debug

class python_pachyderm.mixin.debug.DebugMixin

Methods

binary([filter]) Gets the pachd binary.
dump([filter, limit]) Gets a debug dump.
profile_cpu(duration[, filter]) Gets a CPU profile.

binary(filter=None)
Gets the pachd binary. Yields byte arrays.

Parameters
filter [Filter protobuf, optional] An optional Filter object.

dump(filter=None, limit=None)
Gets a debug dump. Yields byte arrays.

Parameters
filter [Filter protobuf, optional] An optional Filter object.

limit [int, optional] Limits the number of commits/jobs returned for each repo/pipeline in
the dump

profile_cpu(duration, filter=None)
Gets a CPU profile. Yields byte arrays.

Parameters
duration [Duration protobuf] A Duration object specifying how long to run the CPU pro-

filer.

filter [Filter protobuf, optional] An optional Filter object.

python_pachyderm.mixin.enterprise

class python_pachyderm.mixin.enterprise.EnterpriseMixin

Methods

activate_enterprise(activation_code[, expires]) Activates enterprise.
deactivate_enterprise() Deactivates enterprise.
get_activation_code() Returns the enterprise code used to activate Pachdy-

erm Enterprise in this cluster.
get_enterprise_state() Gets the current enterprise state of the cluster.

activate_enterprise(activation_code, expires=None)
Activates enterprise. Returns a TokenInfo object.

1.1. python_pachyderm 7

python-pachyderm

Parameters
activation_code [str] Specifies a Pachyderm enterprise activation code. New users can ob-

tain trial activation codes.

expires [Timestamp protobuf, optional] An optional Timestamp object indicating when this
activation code will expire. This should not generally be set (it’s primarily used for testing),
and is only applied if it’s earlier than the signed expiration time in activation_code.

deactivate_enterprise()
Deactivates enterprise.

get_activation_code()
Returns the enterprise code used to activate Pachdyerm Enterprise in this cluster.

get_enterprise_state()
Gets the current enterprise state of the cluster. Returns a GetEnterpriseResponse object.

python_pachyderm.mixin.health

class python_pachyderm.mixin.health.HealthMixin

Methods

health () Returns a health check indicating if the server can
handle RPCs.

health()
Returns a health check indicating if the server can handle RPCs.

python_pachyderm.mixin.pfs

class python_pachyderm.mixin.pfs.AtomicOp(commit, path, **kwargs)
Represents an operation in a PutFile call.

Methods

reqs() Yields one or more protobuf PutFileRequests,
which are then enqueued into the request's channel.

reqs()
Yields one or more protobuf PutFileRequests, which are then enqueued into the request’s channel.

class python_pachyderm.mixin.pfs.AtomicPutFileobjOp(commit, path, value, **kwargs)
A PutFile operation to put a file from a file-like object.

8 Chapter 1. Overview

python-pachyderm

Methods

reqs() Yields one or more protobuf PutFileRequests,
which are then enqueued into the request's channel.

reqs()
Yields one or more protobuf PutFileRequests, which are then enqueued into the request’s channel.

class python_pachyderm.mixin.pfs.AtomicPutFilepathOp(commit, pfs_path, local_path, **kwargs)
A PutFile operation to put a file locally stored at a given path. This file is opened on-demand, which helps with
minimizing the number of open files.

Methods

reqs() Yields one or more protobuf PutFileRequests,
which are then enqueued into the request's channel.

reqs()
Yields one or more protobuf PutFileRequests, which are then enqueued into the request’s channel.

class python_pachyderm.mixin.pfs.PFSFile(res)
The contents of a file stored in PFS.

Examples

You can treat these as either file-like objects, like so:

>>> source_file = client.get_file("montage/master", "/montage.png")
>>> with open("montage.png", "wb") as dest_file:
>>> shutil.copyfileobj(source_file, dest_file)

Or as an iterator of bytes, like so:

>>> source_file = client.get_file("montage/master", "/montage.png")
>>> with open("montage.png", "wb") as dest_file:
>>> for chunk in source_file:
>>> dest_file.write(chunk)

Methods

close() Closes the PFSFile
read([size]) Reads from the PFSFile buffer.

close()
Closes the PFSFile

read(size=- 1)
Reads from the PFSFile buffer.

Parameters

1.1. python_pachyderm 9

python-pachyderm

size [int, optional] The number of bytes to read from the buffer.

class python_pachyderm.mixin.pfs.PFSMixin

Methods

commit(repo_name[, branch, parent, description]) A context manager for running operations within a
commit.

copy_file(source_commit, source_path, ...[, ...]) Efficiently copies files already in PFS.
create_branch (repo_name, branch_name[, ...]) Creates a new branch.
create_repo(repo_name[, description, update]) Creates a new Repo object in PFS with the given

name. Repos are the top level data object in PFS and
should be used to store data of a similar type. For ex-
ample rather than having a single Repo for an entire
project you might have separate ``Repo``s for logs,
metrics, database dumps etc.

create_tmp_file_set() Creates a temporary fileset (used internally).
delete_all_repos([force]) Deletes all repos.
delete_branch (repo_name, branch_name[, force]) Deletes a branch, but leaves the commits themselves

intact.
delete_commit(commit) Deletes a commit.
delete_file(commit, path) Deletes a file from a Commit.
delete_repo(repo_name[, force, ...]) Deletes a repo and reclaims the storage space it was

using.
diff_file(new_commit, new_path[, ...]) Diffs two files.
finish_commit(commit[, description, ...]) Ends the process of committing data to a Repo and

persists the Commit.
flush_commit(commits[, repos]) Blocks until all of the commits which have a set of

commits as provenance have finished.
fsck([fix]) Performs a file system consistency check for PFS.
get_file(commit, path[, offset_bytes, ...]) Returns a PFSFile object, containing the contents of

a file stored in PFS.
glob_file(commit, pattern) Lists files that match a glob pattern.
inspect_branch (repo_name, branch_name) Inspects a branch.
inspect_commit(commit[, block_state]) Inspects a commit.
inspect_file(commit, path) Inspects a file.
inspect_repo(repo_name) Returns info about a specific repo.
list_branch (repo_name[, reverse]) Lists the active branch objects on a repo.
list_commit(repo_name[, to_commit, ...]) Lists commits.
list_file(commit, path[, history, ...])

list_repo() Returns info about all repos, as a list of RepoInfo
objects.

put_file_bytes(commit, path, value[, ...]) Uploads a PFS file from a file-like object, bytestring,
or iterator of bytestrings.

put_file_client() A context manager that gives a PutFileClient.
put_file_url(commit, path, url[, delimiter, ...]) Puts a file using the content found at a URL.
renew_tmp_file_set(fileset_id, ttl_seconds) Renews a temporary fileset (used internally).
start_commit(repo_name[, branch, parent, ...]) Begins the process of committing data to a Repo.
subscribe_commit(repo_name, branch[, ...]) Yields CommitInfo objects as commits occur.
walk_file(commit, path) Walks over all descendant files in a directory.

10 Chapter 1. Overview

python-pachyderm

commit(repo_name, branch=None, parent=None, description=None)
A context manager for running operations within a commit.

Parameters
repo_name [str] The name of the repo.

branch [str, optional] The branch name. This is a more convenient way to build linear chains
of commits. When a commit is started with a non-empty branch the value of branch be-
comes an alias for the created Commit. This enables a more intuitive access pattern. When
the commit is started on a branch the previous head of the branch is used as the parent of
the commit.

parent [Union[tuple, str, Commit probotuf], optional] An optional Commit object specify-
ing the parent commit. Upon creation the new commit will appear identical to the parent
commit, data can safely be added to the new commit without affecting the contents of the
parent commit.

description [str, optional] Description of the commit.

copy_file(source_commit, source_path, dest_commit, dest_path, overwrite=None)
Efficiently copies files already in PFS. Note that the destination repo cannot be an output repo, or the copy
operation will (as of 1.9.0) silently fail.

Parameters
source_commit [Union[tuple, str, Commit protobuf]] Represents the commit with the source

file.

source_path [str] The path of the source file.

dest_commit [Union[tuple, str, Commit protobuf]] Represents the commit for the destina-
tion file.

dest_path [str] The path of the destination file.

overwrite [bool, optional] Whether to overwrite the destination file if it already exists.

create_branch(repo_name, branch_name, commit=None, provenance=None, trigger=None)
Creates a new branch.

Parameters
repo_name [str] The name of the repo.

branch_name [str] The new branch name.

commit [Union[tuple, str, Commit protobuf], optional] Represents the head commit of the
new branch.

provenance [List[Branch protobuf], optional] An optional iterable of Branch objects repre-
senting the branch provenance.

trigger [Trigger protobuf, optional] An optional Trigger object controlling when the head of
branch_name is moved.

create_repo(repo_name, description=None, update=None)
Creates a new Repo object in PFS with the given name. Repos are the top level data object in PFS and
should be used to store data of a similar type. For example rather than having a single Repo for an entire
project you might have separate ``Repo``s for logs, metrics, database dumps etc.

Parameters
repo_name [str] Name of the repo.

1.1. python_pachyderm 11

python-pachyderm

description [str, optional] Description of the repo.

update [bool, optional] Whether to update if the repo already exists.

create_tmp_file_set()
Creates a temporary fileset (used internally). Currently, temp-fileset-related APIs are only used for Pachy-
derm internals (job merging), so we’re avoiding support for these functions until we find a use for them
(feel free to file an issue in github.com/pachyderm/pachyderm)

delete_all_repos(force=None)
Deletes all repos.

Parameters
force [bool, optional] If set to true, the repo will be removed regardless of errors. This argu-

ment should be used with care.

delete_branch(repo_name, branch_name, force=None)
Deletes a branch, but leaves the commits themselves intact. In other words, those commits can still be
accessed via commit IDs and other branches they happen to be on.

Parameters
repo_name [str] The repo name.

branch_name [str] The name of the branch to delete.

force [bool, optional] Whether to force the branch deletion.

delete_commit(commit)
Deletes a commit.

Parameters
commit [Union[tuple, str, Commit protobuf]] The commit to delete.

delete_file(commit, path)
Deletes a file from a Commit. DeleteFile leaves a tombstone in the Commit, assuming the file isn’t written
to later attempting to get the file from the finished commit will result in not found error. The file will of
course remain intact in the Commit’s parent.

Parameters
commit [Union[tuple, str, Commit protobuf]] Represents the commit.

path [str] The path to the file.

delete_repo(repo_name, force=None, split_transaction=None)
Deletes a repo and reclaims the storage space it was using.

Parameters
repo_name [str] The name of the repo.

force [bool, optional] If set to true, the repo will be removed regardless of errors. This argu-
ment should be used with care.

split_transaction [bool, optional] Controls whether Pachyderm attempts to delete the en-
tire repo in a single database transaction. Setting this to True can work around certain
Pachyderm errors, but, if set, the delete_repo() call may need to be retried.

diff_file(new_commit, new_path, old_commit=None, old_path=None, shallow=None)
Diffs two files. If old_commit or old_path are not specified, the same path in the parent of the file specified
by new_commit and new_path will be used.

Parameters

12 Chapter 1. Overview

python-pachyderm

new_commit [Union[tuple, str, Commit protobuf]] Represents the commit for the new file.

new_path [str] The path of the new file.

old_commit [Union[tuple, str, Commit protobuf]] Represents the commit for the old file.

old_path [str] The path of the old file.

shallow [bool, optional] Whether to do a shallow diff.

finish_commit(commit, description=None, input_tree_object_hash=None, tree_object_hashes=None,
datum_object_hash=None, size_bytes=None, empty=None)

Ends the process of committing data to a Repo and persists the Commit. Once a Commit is finished the
data becomes immutable and future attempts to write to it with PutFile will error.

Parameters
commit [Union[tuple, str, Commit protobuf]] Represents the commit.

description [str, optional] Description of this commit.

input_tree_object_hash [str, optional] Specifies an input tree object hash.

tree_object_hashes [List[str], optional] A list of zero or more strings specifying object
hashes for the output trees.

datum_object_hash [str, optional] Specifies an object hash.

size_bytes [int, optional] An optional int.

empty [bool, optional] If set, the commit will be closed (its finished field will be set to the
current time) but its tree will be left None.

flush_commit(commits, repos=None)
Blocks until all of the commits which have a set of commits as provenance have finished. For commits to
be considered they must have all of the specified commits as provenance. This in effect waits for all of the
jobs that are triggered by a set of commits to complete. It returns an error if any of the commits it’s waiting
on are cancelled due to one of the jobs encountering an error during runtime. Note that it’s never necessary
to call FlushCommit to run jobs, they’ll run no matter what, FlushCommit just allows you to wait for them
to complete and see their output once they do. This returns an iterator of CommitInfo objects.

Yields CommitInfo objects.

Parameters
commits [List[Union[tuple, str, Commit protobuf]]] The commits to flush.

repos [List[str], optional] An optional list of strings specifying repo names. If specified, only
commits within these repos will be flushed.

fsck(fix=None)
Performs a file system consistency check for PFS.

get_file(commit, path, offset_bytes=None, size_bytes=None)
Returns a PFSFile object, containing the contents of a file stored in PFS.

Parameters
commit [Union[tuple, str, Commit protobuf]] Represents the commit.

path [str] The path of the file.

offset_bytes [int, optional] Specifies the number of bytes that should be skipped in the be-
ginning of the file.

1.1. python_pachyderm 13

python-pachyderm

size_bytes [int, optional] Limits the total amount of data returned, note you will get fewer
bytes than size_bytes if you pass a value larger than the size of the file. If 0, then all of the
data will be returned.

glob_file(commit, pattern)
Lists files that match a glob pattern. Yields FileInfo objects.

Parameters
commit [Union[tuple, str, Commit protobuf]] Represents the commit.

pattern [str] The glob pattern.

inspect_branch(repo_name, branch_name)
Inspects a branch. Returns a BranchInfo object.

Parameters
repo_name [str] The repo name.

branch_name [str] The branch name.

inspect_commit(commit, block_state=None)
Inspects a commit. Returns a CommitInfo object.

Parameters
commit [Union[tuple, str, Commit protobuf]] Represents the commit.

block_state [int, optional] Causes this method to block until the commit is in the desired
commit state. See the CommitState enum.

inspect_file(commit, path)
Inspects a file. Returns a FileInfo object.

Parameters
commit [Union[tuple, str, Commit protobuf]] Represents the commit.

path [str] The path to the file.

inspect_repo(repo_name)
Returns info about a specific repo. Returns a RepoInfo object.

Parameters
repo_name [str] Name of the repo.

list_branch(repo_name, reverse=None)
Lists the active branch objects on a repo. Returns a list of BranchInfo objects.

Parameters
repo_name [str] The repo name.

reverse [bool, optional] If true, returns branches oldest to newest.

list_commit(repo_name, to_commit=None, from_commit=None, number=None, reverse=None)
Lists commits. Yields CommitInfo objects.

Parameters
repo_name [str] If only repo_name is given, all commits in the repo are returned.

to_commit [Union[tuple, str, Commit protobuf], optional] Only the ancestors of to, includ-
ing to itself, are considered.

14 Chapter 1. Overview

python-pachyderm

from_commit [Union[tuple, str, Commit protobuf], optional] Only the descendants of from,
including from itself, are considered.

number [int, optional] Determines how many commits are returned. If number is 0, all
commits that match the aforementioned criteria are returned.

reverse [bool, optional] If true, returns commits oldest to newest.

list_file(commit, path, history=None, include_contents=None)
Lists the files in a directory.

Parameters
commit [Union[tuple, str, Commit protobuf]] Represents the commit.

path [str] The path to the directory.

history [int, optional] Indicates how many historical versions you want returned. Semantics
are:

• 0: Return the files as they are in commit

• 1: Return above and the files as they are in the last commit they were modified in.

• 2: etc.

• -1: Return all historical versions.

include_contents [bool, optional] If True, file contents are included.

list_repo()
Returns info about all repos, as a list of RepoInfo objects.

put_file_bytes(commit, path, value, delimiter=None, target_file_datums=None, target_file_bytes=None,
overwrite_index=None, header_records=None)

Uploads a PFS file from a file-like object, bytestring, or iterator of bytestrings.

Parameters
commit [Union[tuple, str, Commit protobuf]] Represents the commit.

path [str] The path in the repo the file(s) will be written to.

value [Union[bytes, BinaryIO]] The file contents as bytes, represented as a file-like object,
bytestring, or iterator of bytestrings.

delimiter [int, optional] Causes data to be broken up into separate files by the delimiter e.g.
if you used Delimiter.CSV.value, a separate PFS file will be created for each row in the
input CSV file, rather than one large CSV file.

target_file_datums [int, optional] Specifies the target number of datums in each written file.
It may be lower if data does not split evenly, but will never be higher, unless the value is 0.

target_file_bytes [int, optional] Specifies the target number of bytes in each written file, file
may have more or fewer bytes than the target.

overwrite_index [int, optional] This is the object index where the write starts from. All
existing objects starting from the index are deleted.

header_records [int, optional] An optional int for splitting data when delimiter is not NONE
(or SQL). It specifies the number of records that are converted to a header and applied to
all file shards.

put_file_client()
A context manager that gives a PutFileClient. When the context manager exits, any operations enqueued
from the PutFileClient are executed in a single, atomic PutFile call.

1.1. python_pachyderm 15

python-pachyderm

put_file_url(commit, path, url, delimiter=None, recursive=None, target_file_datums=None,
target_file_bytes=None, overwrite_index=None, header_records=None)

Puts a file using the content found at a URL. The URL is sent to the server which performs the request.

Parameters
commit [Union[tuple, str, Commit protobuf]] Represents the commit.

path [str] The path in the repo the file will be written to.

url [str] The url of the file to put.

delimiter [int, optional] Causes data to be broken up into separate files by the delimiter e.g.
if you used Delimiter.CSV.value, a separate PFS file will be created for each row in the
input CSV file, rather than one large CSV file.

recursive [bool, optional] Allow for recursive scraping of some types URLs, for example on
s3:// URLs.

target_file_datums [int, optional] Specifies the target number of datums in each written file.
It may be lower if data does not split evenly, but will never be higher, unless the value is 0.

target_file_bytes [int, optional] Specifies the target number of bytes in each written file, file
may have more or fewer bytes than the target.

overwrite_index [int, optional] This is the object index where the write starts from. All
existing objects starting from the index are deleted.

header_records [int, optional] An optional int for splitting data when delimiter is not NONE
(or SQL). It specifies the number of records that are converted to a header and applied to
all file shards.

renew_tmp_file_set(fileset_id, ttl_seconds)
Renews a temporary fileset (used internally). Currently, temp-fileset-related APIs are only used for Pachy-
derm internals (job merging), so we’re avoiding support for these functions until we find a use for them
(feel free to file an issue in github.com/pachyderm/pachyderm)

Parameters
fileset_id [str] The fileset ID.

ttl_seconds [int] The number of seconds to keep alive the temporary fileset.

start_commit(repo_name, branch=None, parent=None, description=None, provenance=None)
Begins the process of committing data to a Repo. Once started you can write to the Commit with PutFile
and when all the data has been written you must finish the Commit with FinishCommit. NOTE, data is not
persisted until FinishCommit is called. A Commit object is returned.

Parameters
repo_name [str] The name of the repo.

branch [str, optional] The branch name. This is a more convenient way to build linear chains
of commits. When a commit is started with a non-empty branch the value of branch be-
comes an alias for the created Commit. This enables a more intuitive access pattern. When
the commit is started on a branch the previous head of the branch is used as the parent of
the commit.

parent [Union[tuple, str, Commit probotuf], optional] An optional Commit object specify-
ing the parent commit. Upon creation the new commit will appear identical to the parent
commit, data can safely be added to the new commit without affecting the contents of the
parent commit.

description [str, optional] Description of the commit.

16 Chapter 1. Overview

python-pachyderm

provenance [List[CommitProvenance protobuf], optional] An optional iterable of Commit-
Provenance objects specifying the commit provenance.

subscribe_commit(repo_name, branch, from_commit_id=None, state=None, prov=None)
Yields CommitInfo objects as commits occur.

Parameters
repo_name [str] The name of the repo.

branch [str] The branch to subscribe to.

from_commit_id [str, optional] A commit ID. Only commits created since this commit are
returned.

state [int, optional] The commit state to filter on. See the CommitState enum.

prov [CommitProvenance protobuf, optional] An optional CommitProvenance object.

walk_file(commit, path)
Walks over all descendant files in a directory. Returns a generator of FileInfo objects.

Parameters
commit [Union[tuple, str, Commit protobuf]] Represents the commit.

path [str] The path to the directory.

class python_pachyderm.mixin.pfs.PutFileClient
PutFileClient puts or deletes PFS files atomically.

Methods

delete_file(commit, path) Deletes a file.
put_file_from_bytes(commit, path, value[, ...]) Uploads a PFS file from a bytestring.
put_file_from_fileobj(commit, path, value[,
...])

Uploads a PFS file from a file-like object.

put_file_from_filepath (commit, pfs_path, ...) Uploads a PFS file from a local path at a specified
path.

put_file_from_url(commit, path, url[, ...]) Puts a file using the content found at a URL.

delete_file(commit, path)
Deletes a file.

Parameters
commit [Union[tuple, str, Commit protobuf]] Represents the commit.

path [str] The path to the file.

put_file_from_bytes(commit, path, value, delimiter=None, target_file_datums=None,
target_file_bytes=None, overwrite_index=None, header_records=None)

Uploads a PFS file from a bytestring.

Parameters
commit [Union[tuple, str, Commit protobuf]] Represents the commit.

path [str] The path in the repo to upload the file to will be written to.

value [bytes] The file contents as a bytestring.

1.1. python_pachyderm 17

python-pachyderm

delimiter [int, optional] Causes data to be broken up into separate files by the delimiter e.g.
if you used Delimiter.CSV.value, a separate PFS file will be created for each row in the
input CSV file, rather than one large CSV file.

target_file_datums [int, optional] Specifies the target number of datums in each written file.
It may be lower if data does not split evenly, but will never be higher, unless the value is 0.

target_file_bytes [int, optional] Specifies the target number of bytes in each written file, file
may have more or fewer bytes than the target.

overwrite_index [int, optional] This is the object index where the write starts from. All
existing objects starting from the index are deleted.

header_records [int, optional] An optional int for splitting data when delimiter is not NONE
(or SQL). It specifies the number of records that are converted to a header and applied to
all file shards.

put_file_from_fileobj(commit, path, value, delimiter=None, target_file_datums=None,
target_file_bytes=None, overwrite_index=None, header_records=None)

Uploads a PFS file from a file-like object.

Parameters
commit [Union[tuple, str, Commit protobuf]] Represents the commit.

path [str] The path in the repo to upload the file to will be written to.

value [BinaryIO] The file-like object.

delimiter [int, optional] Causes data to be broken up into separate files by the delimiter e.g.
if you used Delimiter.CSV.value, a separate PFS file will be created for each row in the
input CSV file, rather than one large CSV file.

target_file_datums [int, optional] Specifies the target number of datums in each written file.
It may be lower if data does not split evenly, but will never be higher, unless the value is 0.

target_file_bytes [int, optional] Specifies the target number of bytes in each written file, file
may have more or fewer bytes than the target.

overwrite_index [int, optional] This is the object index where the write starts from. All
existing objects starting from the index are deleted.

header_records [int, optional] An optional int for splitting data when delimiter is not NONE
(or SQL). It specifies the number of records that are converted to a header and applied to
all file shards.

put_file_from_filepath(commit, pfs_path, local_path, delimiter=None, target_file_datums=None,
target_file_bytes=None, overwrite_index=None, header_records=None)

Uploads a PFS file from a local path at a specified path. This will lazily open files, which will prevent too
many files from being opened, or too much memory being consumed, when atomically putting many files.

Parameters
commit [Union[tuple, str, Commit protobuf]] Represents the commit.

pfs_path [str] The path in the repo to upload the file to will be written to.

local_path [str] The local file path.

delimiter [int, optional] Causes data to be broken up into separate files by the delimiter e.g.
if you used Delimiter.CSV.value, a separate PFS file will be created for each row in the
input CSV file, rather than one large CSV file.

18 Chapter 1. Overview

python-pachyderm

target_file_datums [int, optional] Specifies the target number of datums in each written file.
It may be lower if data does not split evenly, but will never be higher, unless the value is 0.

target_file_bytes [int, optional] Specifies the target number of bytes in each written file, file
may have more or fewer bytes than the target.

overwrite_index [int, optional] This is the object index where the write starts from. All
existing objects starting from the index are deleted.

header_records [int, optional] An optional int for splitting data when delimiter is not NONE
(or SQL). It specifies the number of records that are converted to a header and applied to
all file shards.

put_file_from_url(commit, path, url, delimiter=None, recursive=None, target_file_datums=None,
target_file_bytes=None, overwrite_index=None, header_records=None)

Puts a file using the content found at a URL. The URL is sent to the server which performs the request.

Parameters
commit [Union[tuple, str, Commit protobuf]] Represents the commit.

path [str] The path in the repo the file will be written to.

url [str] The url of the file to put.

delimiter [int, optional] Causes data to be broken up into separate files by the delimiter e.g.
if you used Delimiter.CSV.value, a separate PFS file will be created for each row in the
input CSV file, rather than one large CSV file.

recursive [bool, optional] Allow for recursive scraping of some types URLs, for example on
s3:// URLs.

target_file_datums [int, optional] Specifies the target number of datums in each written file.
It may be lower if data does not split evenly, but will never be higher, unless the value is 0.

target_file_bytes [int, optional] Specifies the target number of bytes in each written file, file
may have more or fewer bytes than the target.

overwrite_index [int, optional] This is the object index where the write starts from. All
existing objects starting from the index are deleted.

header_records [int, optional] An optional int for splitting data when delimiter is not NONE
(or SQL). It specifies the number of records that are converted to a header and applied to
all file shards.

python_pachyderm.mixin.pfs.put_file_from_fileobj_reqs(fileish, **kwargs)

python_pachyderm.mixin.pfs.put_file_from_iterable_reqs(value, **kwargs)

python_pachyderm.mixin.pps

class python_pachyderm.mixin.pps.PPSMixin

1.1. python_pachyderm 19

python-pachyderm

Methods

create_pipeline(pipeline_name, transform[, ...]) Creates a pipeline.
create_pipeline_from_request(req) Creates a pipeline from a CreatePipelineRequest

object.
create_secret(secret_name, data[, labels, ...]) Creates a new secret.
create_tf_job_pipeline(pipeline_name, tf_job) Creates a pipeline.
delete_all() Deletes everything in Pachyderm.
delete_all_pipelines([force]) Deletes all pipelines.
delete_job(job_id) Deletes a job by its ID.
delete_pipeline(pipeline_name[, force, ...]) Deletes a pipeline.
delete_secret(secret_name) Deletes a secret.
flush_job(commits[, pipeline_names]) Blocks until all of the jobs which have a set of com-

mits as provenance have finished.
garbage_collect([memory_bytes]) Runs garbage collection.
get_job_logs(job_id[, data_filters, datum, ...]) Gets logs for a job.
get_pipeline_logs(pipeline_name[, ...]) Gets logs for a pipeline.
inspect_datum(job_id, datum_id) Inspects a datum.
inspect_job(job_id[, block_state, ...]) Inspects a job with a given ID.
inspect_pipeline(pipeline_name[, history])

inspect_secret(secret_name) Inspects a secret.
list_datum([job_id, page_size, page, input, ...]) Lists datums.
list_job([pipeline_name, input_commit, ...])

list_pipeline([history, allow_incomplete, ...])

list_secret() Lists secrets.
restart_datum(job_id[, data_filters]) Restarts a datum.
run_cron(pipeline_name) Explicitly triggers a pipeline with one or more cron

inputs to run now.
run_pipeline(pipeline_name[, provenance,
job_id])

Runs a pipeline.

start_pipeline(pipeline_name) Starts a pipeline.
stop_job(job_id) Stops a job by its ID.
stop_pipeline(pipeline_name) Stops a pipeline.

create_pipeline(pipeline_name, transform, parallelism_spec=None, hashtree_spec=None, egress=None,
update=None, output_branch=None, resource_requests=None, resource_limits=None,
input=None, description=None, cache_size=None, enable_stats=None, reprocess=None,
max_queue_size=None, service=None, chunk_spec=None, datum_timeout=None,
job_timeout=None, salt=None, standby=None, datum_tries=None,
scheduling_spec=None, pod_patch=None, spout=None, spec_commit=None,
metadata=None, s3_out=None, sidecar_resource_limits=None, reprocess_spec=None,
autoscaling=None)

Creates a pipeline. For more info, please refer to the pipeline spec document: http://docs.pachyderm.io/en/
latest/reference/pipeline_spec.html

Parameters
pipeline_name [str] The pipeline name.

transform [Transform protobuf] A Transform object.

20 Chapter 1. Overview

http://docs.pachyderm.io/en/latest/reference/pipeline_spec.html
http://docs.pachyderm.io/en/latest/reference/pipeline_spec.html

python-pachyderm

parallelism_spec [ParallelismSpec protobuf, optional] An optional ParallelismSpec ob-
ject.

hashtree_spec [HashtreeSpec protobuf, optional] An optional HashtreeSpec object.

egress [Egress protobuf, optional] An optional Egress object.

update [bool, optional] Whether this should behave as an upsert.

output_branch [str, optional] The branch to output results on.

resource_requests [ResourceSpec protobuf, optional] An optional ResourceSpec object.

resource_limits [ResourceSpec protobuf, optional] An optional ResourceSpec object.

input [Input protobuf, optional] An optional Input object.

description [str, optional] Description of the pipeline.

cache_size [str, optional] An optional string.

enable_stats [bool, optional] An optional bool.

reprocess [bool, optional] If true, Pachyderm forces the pipeline to reprocess all datums. It
only has meaning if update is True.

max_queue_size [int, optional] An optional int.

service [Service protobuf, optional] An optional Service object.

chunk_spec [ChunkSpec protobuf, optional] An optional ChunkSpec object.

datum_timeout [Duration protobuf, optional] An optional Duration object.

job_timeout [Duration protobuf, optional] An optional Duration object.

salt [str, optional] An optional string.

standby [bool, optional] An optional bool.

datum_tries [int, optional] An optional int.

scheduling_spec [SchedulingSpec protobuf, optional] An optional SchedulingSpec ob-
ject.

pod_patch [str, optional] An optional string.

spout [Spout protobuf, optional] An optional Spout object.

spec_commit [Commit protobuf, optional] An optional Commit object.

metadata [Metadata protobuf, optional] An optional Metadata object.

s3_out [bool, optional] Unused.

sidecar_resource_limits [ResourceSpec protobuf, optional] An optional ResourceSpec
setting resource limits for the pipeline sidecar.

create_pipeline_from_request(req)
Creates a pipeline from a CreatePipelineRequest object. Usually this would be used in conjunc-
tion with util.parse_json_pipeline_spec() or util.parse_dict_pipeline_spec(). If you’re
in pure python and not working with a pipeline spec file, the sibling method create_pipeline() is more
ergonomic.

Parameters
req [CreatePipelineRequest protobuf] A CreatePipelineRequest object.

1.1. python_pachyderm 21

python-pachyderm

create_secret(secret_name, data, labels=None, annotations=None)
Creates a new secret.

Parameters
secret_name [str] The name of the secret to create.

data [Dict[str, Union[str, bytes]]] The data to store in the secret. Each key must consist of
alphanumeric characters -, _ or ..

labels [Dict[str, str], optional] Kubernetes labels to attach to the secret.

annotations [Dict[str, str], optional] Kubernetes annotations to attach to the secret.

create_tf_job_pipeline(pipeline_name, tf_job, parallelism_spec=None, hashtree_spec=None,
egress=None, update=None, output_branch=None,
scale_down_threshold=None, resource_requests=None, resource_limits=None,
input=None, description=None, cache_size=None, enable_stats=None,
reprocess=None, max_queue_size=None, service=None, chunk_spec=None,
datum_timeout=None, job_timeout=None, salt=None, standby=None,
datum_tries=None, scheduling_spec=None, pod_patch=None, spout=None,
spec_commit=None)

Creates a pipeline. For more info, please refer to the pipeline spec document: http://docs.pachyderm.io/en/
latest/reference/pipeline_spec.html

Parameters
pipeline_name [str] The pipeline name.

tf_job [TFJob protobuf] Pachyderm uses this to create TFJobs when running in a Kubernetes
cluster on which kubeflow has been installed.

parallelism_spec [ParallelismSpec protobuf, optional] An optional ParallelismSpec ob-
ject.

hashtree_spec [HashtreeSpec protobuf, optional] An optional HashtreeSpec object.

egress [Egress protobuf, optional] An optional Egress object.

update [bool, optional] Whether this should behave as an upsert.

output_branch [str, optional] The branch to output results on.

scale_down_threshold [Duration protobuf, optional] An optional Duration object.

resource_requests [ResourceSpec protobuf, optional] An optional ResourceSpec object.

resource_limits [ResourceSpec protobuf, optional] An optional ResourceSpec object.

input [Input protobuf, optional] An optional Input object.

description [str, optional] Description of the pipeline.

cache_size [str, optional] An optional string.

enable_stats [bool, optional] An optional bool.

reprocess [bool, optional] If true, Pachyderm forces the pipeline to reprocess all datums. It
only has meaning if update is True.

max_queue_size [int, optional] An optional int.

service [Service protobuf, optional] An optional Service object.

chunk_spec [ChunkSpec protobuf, optional] An optional ChunkSpec object.

datum_timeout [Duration protobuf, optional] An optional Duration object.

22 Chapter 1. Overview

http://docs.pachyderm.io/en/latest/reference/pipeline_spec.html
http://docs.pachyderm.io/en/latest/reference/pipeline_spec.html

python-pachyderm

job_timeout [Duration protobuf, optional] An optional Duration object.

salt [str, optional] An optional string.

standby [bool, optional] An optional bool.

datum_tries [int, optional] An optional int.

scheduling_spec [SchedulingSpec protobuf, optional] An optional SchedulingSpec ob-
ject.

pod_patch [str, optional] An optional string.

spout [Spout protobuf, optional] An optional Spout object.

spec_commit [Commit protobuf, optional] An optional Commit object.

delete_all()
Deletes everything in Pachyderm.

delete_all_pipelines(force=None)
Deletes all pipelines.

Parameters
force [bool, optional] Whether to force delete.

delete_job(job_id)
Deletes a job by its ID.

Parameters
job_id [str] The ID of the job to delete.

delete_pipeline(pipeline_name, force=None, keep_repo=None, split_transaction=None)
Deletes a pipeline.

Parameters
pipeline_name [str] The pipeline name.

force [bool, optional] Whether to force delete.

keep_repo [bool, optional] Whether to keep the output repo.

split_transaction [bool, optional] Whether Pachyderm attempts to delete the pipeline in a
single database transaction. Setting this to True can work around certain Pachyderm errors,
but, if set, the ``delete_repo()` call may need to be retried.

delete_secret(secret_name)
Deletes a secret.

Parameters
secret_name [str] The name of the secret to delete.

flush_job(commits, pipeline_names=None)
Blocks until all of the jobs which have a set of commits as provenance have finished. Yields JobInfo
objects.

Parameters
commits [List[Union[tuple, str, Commit protobuf]]] A list representing the commits to flush.

pipeline_names [List[str], optional] A list of strings specifying pipeline names. If specified,
only jobs within these pipelines will be flushed.

1.1. python_pachyderm 23

python-pachyderm

garbage_collect(memory_bytes=None)
Runs garbage collection.

Parameters
memory_bytes [int, optional] How much memory to use in computing which objects are

alive. A larger number will result in more precise garbage collection (at the cost of more
memory usage).

get_job_logs(job_id, data_filters=None, datum=None, follow=None, tail=None, use_loki_backend=None,
since=None)

Gets logs for a job. Yields LogMessage objects.

Parameters
job_id [str] The ID of the job.

data_filters [List[str], optional] A list of the names of input files from which we want pro-
cessing logs. This may contain multiple files, in case pipeline_name contains multiple
inputs. Each filter may be an absolute path of a file within a repo, or it may be a hash for
that file (to search for files at specific versions).

datum [Datum protobuf, optional] Filters log lines for the specified datum.

follow [bool, optional] If true, continue to follow new logs as they appear.

tail [int, optional] If nonzero, the number of lines from the end of the logs to return. Note:
tail applies per container, so you will get tail * <number of pods> total lines back.

use_loki_backend [bool, optional] If true, use loki as a backend, rather than Kubernetes, for
fetching logs. Requires a loki-enabled cluster.

since [Duration protobuf, optional] Specifies how far in the past to return logs from.

get_pipeline_logs(pipeline_name, data_filters=None, master=None, datum=None, follow=None,
tail=None, use_loki_backend=None, since=None)

Gets logs for a pipeline. Yields LogMessage objects.

Parameters
pipeline_name [str] The name of the pipeline.

data_filters [List[str], optional] A list of the names of input files from which we want pro-
cessing logs. This may contain multiple files, in case pipeline_name contains multiple
inputs. Each filter may be an absolute path of a file within a repo, or it may be a hash for
that file (to search for files at specific versions).

master [bool, optional] If true, includes logs from the master

datum [Datum protobuf, optional] Filters log lines for the specified datum.

follow [bool, optional] If true, continue to follow new logs as they appear.

tail [int, optional] If nonzero, the number of lines from the end of the logs to return. Note:
tail applies per container, so you will get tail * <number of pods> total lines back.

use_loki_backend [bool, optional] If true, use loki as a backend, rather than Kubernetes, for
fetching logs. Requires a loki-enabled cluster.

since [Duration protobuf, optional] Specifies how far in the past to return logs from.

inspect_datum(job_id, datum_id)
Inspects a datum. Returns a DatumInfo object.

Parameters

24 Chapter 1. Overview

python-pachyderm

job_id [str] The ID of the job.

datum_id [str] The ID of the datum.

inspect_job(job_id, block_state=None, output_commit=None, full=None)
Inspects a job with a given ID. Returns a JobInfo.

Parameters
job_id [str] The ID of the job to inspect.

block_state [bool, optional] If true, block until the job completes.

output_commit [Union[tuple, str, Commit protobuf], optional] Represents an output com-
mit to filter on.

full [bool, optional] If true, include worker status.

inspect_pipeline(pipeline_name, history=None)
Inspects a pipeline. Returns a PipelineInfo object.

Parameters
pipeline_name [str] The pipeline name.

history [int, optional] Indicates to return historical versions of pipelines. Semantics are:

• 0: Return current version of pipelines.

• 1: Return the above and pipelines from the next most recent version.

• 2: etc.

• -1: Return pipelines from all historical versions.

inspect_secret(secret_name)
Inspects a secret.

Parameters
secret_name [str] The name of the secret to inspect.

list_datum(job_id=None, page_size=None, page=None, input=None, status_only=None)
Lists datums. Yields ListDatumStreamResponse objects.

Parameters
job_id [str, optional] The ID of a job. Exactly one of job_id (real) or input (hypothetical)

must be set.

page_size [int, optional] The size of the page.

page [int, optional] The page number.

input [Input protobuf, optional] If set in lieu of job_id, list_datum() returns the datums
that would be given to a hypothetical job that used input as its input spec. Exactly one of
job_id (real) or input (hypothetical) must be set.

list_job(pipeline_name=None, input_commit=None, output_commit=None, history=None, full=None,
jqFilter=None)

Lists jobs. Yields JobInfo objects.

Parameters
pipeline_name [str, optional] A pipeline name to filter on.

input_commit [List[Union[tuple, str, Commit protobuf]], optional] An optional list repre-
senting input commits to filter on.

1.1. python_pachyderm 25

python-pachyderm

output_commit [Union[tuple, str, Commit protobuf], optional] Represents an output com-
mit to filter on.

history [int, optional] Indicates to return jobs from historical versions of pipelines. Seman-
tics are:

• 0: Return jobs from the current version of the pipeline or pipelines.

• 1: Return the above and jobs from the next most recent version

• 2: etc.

• -1: Return jobs from all historical versions.

full [bool, optional] Whether the result should include all pipeline details in each JobInfo,
or limited information including name and status, but excluding information in the pipeline
spec. Leaving this None (or False) can make the call significantly faster in clusters with
a large number of pipelines and jobs. Note that if input_commit is set, this field is coerced
to True.

jqFilter [str, optional] A jq filter that can restrict the list of jobs returned.

list_pipeline(history=None, allow_incomplete=None, jqFilter=None)
Lists pipelines. Returns a PipelineInfos object.

Parameters
history [int, optional] Indicates to return historical versions of pipelines. Semantics are:

• 0: Return current version of pipelines.

• 1: Return the above and pipelines from the next most recent version.

• 2: etc.

• -1: Return pipelines from all historical versions.

allow_incomplete [bool, optional] If True, causes list_pipeline() to return
PipelineInfos with incomplete data where the pipeline spec cannot be retrieved.
Incomplete PipelineInfos will have a None Transform field, but will have the fields
present in EtcdPipelineInfo.

jqFilter [str, optional] A jq filter that can restrict the list of pipelines returned.

list_secret()
Lists secrets. Returns a list of SecretInfo objects.

restart_datum(job_id, data_filters=None)
Restarts a datum.

Parameters
job_id [str] The ID of the job.

data_filters [List[str], optional] An optional iterable of strings.

run_cron(pipeline_name)
Explicitly triggers a pipeline with one or more cron inputs to run now.

Parameters
pipeline_name [str] The pipeline name.

run_pipeline(pipeline_name, provenance=None, job_id=None)
Runs a pipeline.

Parameters

26 Chapter 1. Overview

python-pachyderm

pipeline_name [str] The pipeline name.

provenance [List[CommitProvenance protobuf], optional] A list representing the pipeline
execution provenance.

job_id [str, optional] A specific job ID to run.

start_pipeline(pipeline_name)
Starts a pipeline.

Parameters
pipeline_name [str] The pipeline name.

stop_job(job_id)
Stops a job by its ID.

Parameters
job_id [str] The ID of the job to stop.

stop_pipeline(pipeline_name)
Stops a pipeline.

Parameters
pipeline_name [str] The pipeline name.

python_pachyderm.mixin.pps.pipeline_inputs(root)

python_pachyderm.mixin.transaction

class python_pachyderm.mixin.transaction.TransactionMixin

Methods

batch_transaction(requests) Executes a batch transaction.
delete_all_transactions() Deletes all transactions.
delete_transaction(transaction) Deletes a given transaction.
finish_transaction(transaction) Finishes a given transaction.
inspect_transaction(transaction) Inspects a given transaction.
list_transaction() Lists transactions.
start_transaction() Starts a transaction.
transaction() A context manager for running operations within a

transaction.

batch_transaction(requests)
Executes a batch transaction.

Parameters
requests [List[TransactionRequest protobuf]] A list of TransactionRequest objects.

delete_all_transactions()
Deletes all transactions.

delete_transaction(transaction)
Deletes a given transaction.

1.1. python_pachyderm 27

python-pachyderm

Parameters
transaction [Union[str, Transaction protobuf]] Transaction ID or Transaction object.

finish_transaction(transaction)
Finishes a given transaction.

Parameters
transaction [Union[str, Transaction protobuf]] Transaction ID or Transaction object.

inspect_transaction(transaction)
Inspects a given transaction.

Parameters
transaction [Union[str, Transaction protobuf]] Transaction ID or Transaction object.

list_transaction()
Lists transactions.

start_transaction()
Starts a transaction.

transaction()
A context manager for running operations within a transaction. When the context manager completes, the
transaction will be deleted if an error occurred, or otherwise finished.

python_pachyderm.mixin.transaction.transaction_from(transaction)

python_pachyderm.mixin.util

python_pachyderm.mixin.util.commit_from(src, allow_just_repo=False)

python_pachyderm.mixin.version

class python_pachyderm.mixin.version.VersionMixin

Methods

get_remote_version() Gets version of Pachyderm server.

get_remote_version()
Gets version of Pachyderm server.

28 Chapter 1. Overview

python-pachyderm

1.1.2 Client

class python_pachyderm.client.Client(host=None, port=None, auth_token=None, root_certs=None,
transaction_id=None, tls=None)

Bases: python_pachyderm.mixin.admin.AdminMixin, python_pachyderm.mixin.auth.
AuthMixin, python_pachyderm.mixin.debug.DebugMixin, python_pachyderm.mixin.enterprise.
EnterpriseMixin, python_pachyderm.mixin.health.HealthMixin, python_pachyderm.mixin.
pfs.PFSMixin, python_pachyderm.mixin.pps.PPSMixin, python_pachyderm.mixin.transaction.
TransactionMixin, python_pachyderm.mixin.version.VersionMixin, object

Attributes
auth_token
transaction_id

Methods

activate_auth(subject[, github_token, ...]) Activates auth, creating an initial set of admins.
activate_enterprise(activation_code[, expires]) Activates enterprise.
authenticate_github(github_token) Authenticates a GitHub user to the Pachyderm clus-

ter.
authenticate_id_token(id_token) Authenticates a user to the Pachyderm cluster using

an ID token issued by the OIDC provider.
authenticate_oidc(oidc_state) Authenticates a user to the Pachyderm cluster via

OIDC.
authenticate_one_time_password(one_time_password)Authenticates a user to the Pachyderm cluster using

a one-time password.
authorize(repo, scope) Authorizes the user to a given repo/scope.
batch_transaction(requests) Executes a batch transaction.
binary([filter]) Gets the pachd binary.
commit(repo_name[, branch, parent, description]) A context manager for running operations within a

commit.
copy_file(source_commit, source_path, ...[, ...]) Efficiently copies files already in PFS.
create_branch(repo_name, branch_name[, ...]) Creates a new branch.
create_pipeline(pipeline_name, transform[, ...]) Creates a pipeline.
create_pipeline_from_request(req) Creates a pipeline from a CreatePipelineRequest

object.
create_repo(repo_name[, description, update]) Creates a new Repo object in PFS with the given

name. Repos are the top level data object in PFS and
should be used to store data of a similar type. For ex-
ample rather than having a single Repo for an entire
project you might have separate ``Repo``s for logs,
metrics, database dumps etc.

create_secret(secret_name, data[, labels, ...]) Creates a new secret.
create_tf_job_pipeline(pipeline_name, tf_job) Creates a pipeline.
create_tmp_file_set() Creates a temporary fileset (used internally).
deactivate_auth() Deactivates auth, removing all ACLs, tokens, and ad-

mins from the Pachyderm cluster and making all data
publicly accessible.

deactivate_enterprise() Deactivates enterprise.
delete_all() Deletes everything in Pachyderm.

continues on next page

1.1. python_pachyderm 29

python-pachyderm

Table 15 – continued from previous page
delete_all_pipelines([force]) Deletes all pipelines.
delete_all_repos([force]) Deletes all repos.
delete_all_transactions() Deletes all transactions.
delete_branch(repo_name, branch_name[, force]) Deletes a branch, but leaves the commits themselves

intact.
delete_commit(commit) Deletes a commit.
delete_file(commit, path) Deletes a file from a Commit.
delete_job(job_id) Deletes a job by its ID.
delete_pipeline(pipeline_name[, force, ...]) Deletes a pipeline.
delete_repo(repo_name[, force, ...]) Deletes a repo and reclaims the storage space it was

using.
delete_secret(secret_name) Deletes a secret.
delete_transaction(transaction) Deletes a given transaction.
diff_file(new_commit, new_path[, ...]) Diffs two files.
dump([filter, limit]) Gets a debug dump.
extend_auth_token(token, ttl) Extends an existing auth token.
extract([url, no_objects, no_repos, ...]) Extracts cluster data for backup.
extract_auth_tokens() This maps to an internal function that is only used for

migration.
extract_pipeline(pipeline_name) Extracts a pipeline for backup.
finish_commit(commit[, description, ...]) Ends the process of committing data to a Repo and

persists the Commit.
finish_transaction(transaction) Finishes a given transaction.
flush_commit(commits[, repos]) Blocks until all of the commits which have a set of

commits as provenance have finished.
flush_job(commits[, pipeline_names]) Blocks until all of the jobs which have a set of com-

mits as provenance have finished.
fsck([fix]) Performs a file system consistency check for PFS.
garbage_collect([memory_bytes]) Runs garbage collection.
get_acl(repo) Gets the ACL of a repo.
get_activation_code() Returns the enterprise code used to activate Pachdy-

erm Enterprise in this cluster.
get_admins() Returns a list of strings specifying the cluster admins.
get_auth_configuration() Gets the auth configuration.
get_auth_token(subject[, ttl]) Gets an auth token for a subject.
get_cluster_role_bindings() Returns the current set of cluster role bindings.
get_enterprise_state() Gets the current enterprise state of the cluster.
get_file(commit, path[, offset_bytes, ...]) Returns a PFSFile object, containing the contents of

a file stored in PFS.
get_groups([username]) Gets which groups the given username belongs to.
get_job_logs(job_id[, data_filters, datum, ...]) Gets logs for a job.
get_oidc_login() Returns the OIDC login configuration.
get_one_time_password([subject, ttl]) If this Client is authenticated as an admin, you can

generate a one-time password for any given subject.
get_pipeline_logs(pipeline_name[, ...]) Gets logs for a pipeline.
get_remote_version() Gets version of Pachyderm server.
get_scope(username, repos) Gets the auth scope.
get_users(group) Gets which users below to the given.
glob_file(commit, pattern) Lists files that match a glob pattern.
health() Returns a health check indicating if the server can

handle RPCs.
continues on next page

30 Chapter 1. Overview

python-pachyderm

Table 15 – continued from previous page
inspect_branch(repo_name, branch_name) Inspects a branch.
inspect_cluster() Inspects a cluster.
inspect_commit(commit[, block_state]) Inspects a commit.
inspect_datum(job_id, datum_id) Inspects a datum.
inspect_file(commit, path) Inspects a file.
inspect_job(job_id[, block_state, ...]) Inspects a job with a given ID.
inspect_pipeline(pipeline_name[, history])

inspect_repo(repo_name) Returns info about a specific repo.
inspect_secret(secret_name) Inspects a secret.
inspect_transaction(transaction) Inspects a given transaction.
list_branch(repo_name[, reverse]) Lists the active branch objects on a repo.
list_commit(repo_name[, to_commit, ...]) Lists commits.
list_datum([job_id, page_size, page, input, ...]) Lists datums.
list_file(commit, path[, history, ...])

list_job([pipeline_name, input_commit, ...])

list_pipeline([history, allow_incomplete, ...])

list_repo() Returns info about all repos, as a list of RepoInfo
objects.

list_secret() Lists secrets.
list_transaction() Lists transactions.
modify_admins([add, remove]) Adds and/or removes admins.
modify_cluster_role_binding(principal[,
roles])

Sets the list of admin roles for a principal.

modify_members(group[, add, remove]) Adds and/or removes members of a group.
new_from_config([config_file]) Creates a Pachyderm client from a config file, which

can either be passed in as a file-like object, or if unset,
checks the PACH_CONFIG env var for a path.

new_from_pachd_address(pachd_address[, ...]) Creates a Pachyderm client from a given pachd ad-
dress.

new_in_cluster([auth_token, transaction_id]) Creates a Pachyderm client that operates within a
Pachyderm cluster.

profile_cpu(duration[, filter]) Gets a CPU profile.
put_file_bytes(commit, path, value[, ...]) Uploads a PFS file from a file-like object, bytestring,

or iterator of bytestrings.
put_file_client() A context manager that gives a PutFileClient.
put_file_url(commit, path, url[, delimiter, ...]) Puts a file using the content found at a URL.
renew_tmp_file_set(fileset_id, ttl_seconds) Renews a temporary fileset (used internally).
restart_datum(job_id[, data_filters]) Restarts a datum.
restore(requests) Restores a cluster.
restore_auth_token([token]) This maps to an internal function that is only used for

migration.
revoke_auth_token(token) Revokes an auth token.
run_cron(pipeline_name) Explicitly triggers a pipeline with one or more cron

inputs to run now.
run_pipeline(pipeline_name[, provenance,
job_id])

Runs a pipeline.

set_acl(repo, entries) Sets the ACL of a repo.
continues on next page

1.1. python_pachyderm 31

python-pachyderm

Table 15 – continued from previous page
set_auth_configuration(configuration) Set the auth configuration.
set_groups_for_user(username, groups) Sets the group membership for a user.
set_scope(username, repo, scope) Set the auth scope.
start_commit(repo_name[, branch, parent, ...]) Begins the process of committing data to a Repo.
start_pipeline(pipeline_name) Starts a pipeline.
start_transaction() Starts a transaction.
stop_job(job_id) Stops a job by its ID.
stop_pipeline(pipeline_name) Stops a pipeline.
subscribe_commit(repo_name, branch[, ...]) Yields CommitInfo objects as commits occur.
transaction() A context manager for running operations within a

transaction.
walk_file(commit, path) Walks over all descendant files in a directory.
who_am_i() Returns info about the user tied to this Client.

__init__(host=None, port=None, auth_token=None, root_certs=None, transaction_id=None, tls=None)
Creates a Pachyderm client.

Parameters
host [str, optional] The pachd host. Default is ‘localhost’, which is used with pachctl
port-forward.

port [int, optional] The port to connect to. Default is 30650.

auth_token [str, optional] The authentication token. Used if authentication is enabled on the
cluster.

root_certs [bytes, optional] The PEM-encoded root certificates as byte string.

transaction_id [str, optional] The ID of the transaction to run operations on.

tls [bool, optional] Whether TLS should be used. If root_certs are specified, they are used.
Otherwise, we use the certs provided by certifi.

property auth_token

classmethod new_from_config(config_file=None)
Creates a Pachyderm client from a config file, which can either be passed in as a file-like object, or if unset,
checks the PACH_CONFIG env var for a path. If that’s also unset, it defaults to loading from ‘~/.pachy-
derm/config.json’.

Parameters
config_file [TextIO, optional] A file-like object containing the config json file. If unspecified,

we load the config from the default location (‘~/.pachyderm/config.json’).

Returns
Client A python_pachyderm client instance.

classmethod new_from_pachd_address(pachd_address, auth_token=None, root_certs=None,
transaction_id=None)

Creates a Pachyderm client from a given pachd address.

Parameters
pachd_address [str] The address of pachd server

auth_token [str, optional] The authentication token. Used if authentication is enabled on the
cluster.

32 Chapter 1. Overview

python-pachyderm

root_certs [bytes, optional] The PEM-encoded root certificates as byte string. If unspecified,
this will load default certs from certifi.

transaction_id [str, optional] The ID of the transaction to run operations on.

Returns
Client A python_pachyderm client instance.

classmethod new_in_cluster(auth_token=None, transaction_id=None)
Creates a Pachyderm client that operates within a Pachyderm cluster.

Parameters
auth_token [str, optional] The authentication token. Used if authentication is enabled on the

cluster.

transaction_id [str, optional] The ID of the transaction to run operations on.

Returns
Client A python_pachyderm client instance.

property transaction_id

1.1.3 Spout

class python_pachyderm.spout.SpoutCommit(pipe, marker_filename=None)
Represents a commit on a spout, permitting the addition of files.

Methods

close() Closes the commit
put_file_from_bytes(path, bytes) Adds a file to the spout from a bytestring.
put_file_from_fileobj(path, size, fileobj) Adds a file to the spout from a file-like object.
put_marker_from_bytes(bytes) Adds to the marker from a bytestring.
put_marker_from_fileobj(size, fileobj) Writes to the marker file from a file-like object.

__init__(pipe, marker_filename=None)

close()
Closes the commit

put_file_from_bytes(path, bytes)
Adds a file to the spout from a bytestring.

Parameters
path [str] The path to the file in the spout.

bytes [bytes] The bytestring representing the file contents.

put_file_from_fileobj(path, size, fileobj)
Adds a file to the spout from a file-like object.

Parameters
path [str] The path to the file in the spout.

1.1. python_pachyderm 33

python-pachyderm

size [int] The size of the file.

fileobj [BinaryIO] The file-like object to add.

put_marker_from_bytes(bytes)
Adds to the marker from a bytestring.

Parameters
bytes [bytes] The bytestring representing the file contents.

put_marker_from_fileobj(size, fileobj)
Writes to the marker file from a file-like object.

Parameters
size [int] The size of the file.

fileobj [BinaryIO] The file-like object to add.

class python_pachyderm.spout.SpoutManager(marker_filename=None, pfs_directory='/pfs')
A convenience context manager for creating spouts.

Examples

>>> spout = SpoutManager()
>>> while True:
>>> with spout.commit() as commit:
>>> commit.put_file_from_bytes("foo", b"#")
>>> time.sleep(1.0)

Methods

close() Closes the SpoutManager
commit() Opens a commit on the spout.
marker() Gets the marker file as a context manager.

__init__(marker_filename=None, pfs_directory='/pfs')
Creates a new spout manager.

Parameters
marker_filename [str, optional] The name of the file for storing markers. If unspecified,

marker-related operations will fail.

pfs_directory [str, optional] The directory for PFS content. Usually this shouldn’t be ex-
plicitly specified, unless the spout manager is being tested outside of a real Pachyderm
pipeline.

close()
Closes the SpoutManager

commit()
Opens a commit on the spout. When the context manager exits, any added files will be committed.

marker()
Gets the marker file as a context manager.

34 Chapter 1. Overview

python-pachyderm

1.1.4 Util Helper

python_pachyderm.util.create_python_pipeline(client, path, input=None, pipeline_name=None,
image_pull_secrets=None, debug=None, env=None,
secrets=None, image=None, update=False,
**pipeline_kwargs)

Utility function for creating (or updating) a pipeline specially built for executing python code that is stored locally
at path.

A normal pipeline creation process requires you to first build and push a container image with the source and
dependencies baked in. As an alternative process, this function circumvents container image creation by using
build step-enabled pipelines. See the pachyderm core docs for more info.

If path references a directory, it should have:

• A main.py, as the pipeline entry-point.

• An optional requirements.txt that specifies pip requirements.

Parameters
client [Client] The Client instance to use.

path [str] The directory containing the python pipeline source, or an individual python file.

input [Input protobuf, optional] An Input object specifying the pipeline input.

pipeline_name [str, optional] A string specifying the pipeline name. Defaults to using the last
directory name in path.

image_pull_secrets [List[str], optional] A list of strings specifying the pipeline transform’s im-
age pull secrets, which are used for pulling images from a private registry. Defaults to None,
in which case the public docker registry will be used. See the pipeline spec document for
more details.

debug [bool, optional] Specifies whether debug logging should be enabled for the pipeline. De-
faults to False.

env [Dict[str, str], optional] A mapping of string keys to string values specifying custom envi-
ronment variables.

secrets [List[Secret protobufs], optional] A list of Secret objects for secret environment vari-
ables.

image [str, optional] A string specifying the docker image to use for the pipeline. Defaults to
using pachyderm’s official python language builder.

update [bool, optional] Whether to act as an upsert.

**pipeline_kwargs [dict] Keyword arguments to forward to create_pipeline.

python_pachyderm.util.parse_dict_pipeline_spec(d)
Parses a dict of serialized JSON into a CreatePipelineRequest protobuf.

python_pachyderm.util.parse_json_pipeline_spec(j)
Parses a string of JSON into a CreatePipelineRequest protobuf.

python_pachyderm.util.put_files(client, source_path, commit, dest_path, **kwargs)
Utility function for inserting files from the local source_path to Pachyderm. Roughly equivalent to pachctl
put file [-r].

Parameters

1.1. python_pachyderm 35

python-pachyderm

client [Client] The Client instance to use.

source_path [str] The file/directory to recursively insert content from.

commit [Union[tuple, str, Commit protobuf]] The Commit object to use for inserting files.

dest_path [str] The destination path in PFS.

**kwargs [dict] Keyword arguments to forward. See PutFileClient.
put_file_from_fileobj() for details.

36 Chapter 1. Overview

CHAPTER

TWO

LINKS

• python_pachyderm repo

• pachyderm repo

37

https://github.com/pachyderm/python-pachyderm
https://github.com/pachyderm/pachyderm

python-pachyderm

38 Chapter 2. Links

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

39

python-pachyderm

40 Chapter 3. Indices and tables

PYTHON MODULE INDEX

p
python_pachyderm.client, 29
python_pachyderm.mixin, 1
python_pachyderm.mixin.admin, 1
python_pachyderm.mixin.auth, 2
python_pachyderm.mixin.debug, 7
python_pachyderm.mixin.enterprise, 7
python_pachyderm.mixin.health, 8
python_pachyderm.mixin.pfs, 8
python_pachyderm.mixin.pps, 19
python_pachyderm.mixin.transaction, 27
python_pachyderm.mixin.util, 28
python_pachyderm.mixin.version, 28
python_pachyderm.spout, 33
python_pachyderm.util, 35

41

python-pachyderm

42 Python Module Index

INDEX

Symbols
__init__() (python_pachyderm.client.Client method),

32
__init__() (python_pachyderm.spout.SpoutCommit

method), 33
__init__() (python_pachyderm.spout.SpoutManager

method), 34

A
activate_auth() (python_pachyderm.mixin.auth.AuthMixin

method), 3
activate_enterprise()

(python_pachyderm.mixin.enterprise.EnterpriseMixin
method), 7

AdminMixin (class in python_pachyderm.mixin.admin),
1

AtomicOp (class in python_pachyderm.mixin.pfs), 8
AtomicPutFileobjOp (class in

python_pachyderm.mixin.pfs), 8
AtomicPutFilepathOp (class in

python_pachyderm.mixin.pfs), 9
auth_token (python_pachyderm.client.Client property),

32
authenticate_github()

(python_pachyderm.mixin.auth.AuthMixin
method), 3

authenticate_id_token()
(python_pachyderm.mixin.auth.AuthMixin
method), 3

authenticate_oidc()
(python_pachyderm.mixin.auth.AuthMixin
method), 3

authenticate_one_time_password()
(python_pachyderm.mixin.auth.AuthMixin
method), 4

AuthMixin (class in python_pachyderm.mixin.auth), 2
authorize() (python_pachyderm.mixin.auth.AuthMixin

method), 4

B
batch_transaction()

(python_pachyderm.mixin.transaction.TransactionMixin

method), 27
binary() (python_pachyderm.mixin.debug.DebugMixin

method), 7

C
Client (class in python_pachyderm.client), 29
close() (python_pachyderm.mixin.pfs.PFSFile method),

9
close() (python_pachyderm.spout.SpoutCommit

method), 33
close() (python_pachyderm.spout.SpoutManager

method), 34
commit() (python_pachyderm.mixin.pfs.PFSMixin

method), 10
commit() (python_pachyderm.spout.SpoutManager

method), 34
commit_from() (in module

python_pachyderm.mixin.util), 28
copy_file() (python_pachyderm.mixin.pfs.PFSMixin

method), 11
create_branch() (python_pachyderm.mixin.pfs.PFSMixin

method), 11
create_pipeline() (python_pachyderm.mixin.pps.PPSMixin

method), 20
create_pipeline_from_request()

(python_pachyderm.mixin.pps.PPSMixin
method), 21

create_python_pipeline() (in module
python_pachyderm.util), 35

create_repo() (python_pachyderm.mixin.pfs.PFSMixin
method), 11

create_secret() (python_pachyderm.mixin.pps.PPSMixin
method), 21

create_tf_job_pipeline()
(python_pachyderm.mixin.pps.PPSMixin
method), 22

create_tmp_file_set()
(python_pachyderm.mixin.pfs.PFSMixin
method), 12

D
deactivate_auth() (python_pachyderm.mixin.auth.AuthMixin

43

python-pachyderm

method), 4
deactivate_enterprise()

(python_pachyderm.mixin.enterprise.EnterpriseMixin
method), 8

DebugMixin (class in python_pachyderm.mixin.debug), 7
delete_all() (python_pachyderm.mixin.pps.PPSMixin

method), 23
delete_all_pipelines()

(python_pachyderm.mixin.pps.PPSMixin
method), 23

delete_all_repos() (python_pachyderm.mixin.pfs.PFSMixin
method), 12

delete_all_transactions()
(python_pachyderm.mixin.transaction.TransactionMixin
method), 27

delete_branch() (python_pachyderm.mixin.pfs.PFSMixin
method), 12

delete_commit() (python_pachyderm.mixin.pfs.PFSMixin
method), 12

delete_file() (python_pachyderm.mixin.pfs.PFSMixin
method), 12

delete_file() (python_pachyderm.mixin.pfs.PutFileClient
method), 17

delete_job() (python_pachyderm.mixin.pps.PPSMixin
method), 23

delete_pipeline() (python_pachyderm.mixin.pps.PPSMixin
method), 23

delete_repo() (python_pachyderm.mixin.pfs.PFSMixin
method), 12

delete_secret() (python_pachyderm.mixin.pps.PPSMixin
method), 23

delete_transaction()
(python_pachyderm.mixin.transaction.TransactionMixin
method), 27

diff_file() (python_pachyderm.mixin.pfs.PFSMixin
method), 12

dump() (python_pachyderm.mixin.debug.DebugMixin
method), 7

E
EnterpriseMixin (class in

python_pachyderm.mixin.enterprise), 7
extend_auth_token()

(python_pachyderm.mixin.auth.AuthMixin
method), 4

extract() (python_pachyderm.mixin.admin.AdminMixin
method), 1

extract_auth_tokens()
(python_pachyderm.mixin.auth.AuthMixin
method), 4

extract_pipeline() (python_pachyderm.mixin.admin.AdminMixin
method), 2

F
finish_commit() (python_pachyderm.mixin.pfs.PFSMixin

method), 13
finish_transaction()

(python_pachyderm.mixin.transaction.TransactionMixin
method), 28

flush_commit() (python_pachyderm.mixin.pfs.PFSMixin
method), 13

flush_job() (python_pachyderm.mixin.pps.PPSMixin
method), 23

fsck() (python_pachyderm.mixin.pfs.PFSMixin
method), 13

G
garbage_collect() (python_pachyderm.mixin.pps.PPSMixin

method), 23
get_acl() (python_pachyderm.mixin.auth.AuthMixin

method), 4
get_activation_code()

(python_pachyderm.mixin.enterprise.EnterpriseMixin
method), 8

get_admins() (python_pachyderm.mixin.auth.AuthMixin
method), 4

get_auth_configuration()
(python_pachyderm.mixin.auth.AuthMixin
method), 4

get_auth_token() (python_pachyderm.mixin.auth.AuthMixin
method), 4

get_cluster_role_bindings()
(python_pachyderm.mixin.auth.AuthMixin
method), 5

get_enterprise_state()
(python_pachyderm.mixin.enterprise.EnterpriseMixin
method), 8

get_file() (python_pachyderm.mixin.pfs.PFSMixin
method), 13

get_groups() (python_pachyderm.mixin.auth.AuthMixin
method), 5

get_job_logs() (python_pachyderm.mixin.pps.PPSMixin
method), 24

get_oidc_login() (python_pachyderm.mixin.auth.AuthMixin
method), 5

get_one_time_password()
(python_pachyderm.mixin.auth.AuthMixin
method), 5

get_pipeline_logs()
(python_pachyderm.mixin.pps.PPSMixin
method), 24

get_remote_version()
(python_pachyderm.mixin.version.VersionMixin
method), 28

get_scope() (python_pachyderm.mixin.auth.AuthMixin
method), 5

44 Index

python-pachyderm

get_users() (python_pachyderm.mixin.auth.AuthMixin
method), 5

glob_file() (python_pachyderm.mixin.pfs.PFSMixin
method), 14

H
health() (python_pachyderm.mixin.health.HealthMixin

method), 8
HealthMixin (class in python_pachyderm.mixin.health),

8

I
inspect_branch() (python_pachyderm.mixin.pfs.PFSMixin

method), 14
inspect_cluster() (python_pachyderm.mixin.admin.AdminMixin

method), 2
inspect_commit() (python_pachyderm.mixin.pfs.PFSMixin

method), 14
inspect_datum() (python_pachyderm.mixin.pps.PPSMixin

method), 24
inspect_file() (python_pachyderm.mixin.pfs.PFSMixin

method), 14
inspect_job() (python_pachyderm.mixin.pps.PPSMixin

method), 25
inspect_pipeline() (python_pachyderm.mixin.pps.PPSMixin

method), 25
inspect_repo() (python_pachyderm.mixin.pfs.PFSMixin

method), 14
inspect_secret() (python_pachyderm.mixin.pps.PPSMixin

method), 25
inspect_transaction()

(python_pachyderm.mixin.transaction.TransactionMixin
method), 28

L
list_branch() (python_pachyderm.mixin.pfs.PFSMixin

method), 14
list_commit() (python_pachyderm.mixin.pfs.PFSMixin

method), 14
list_datum() (python_pachyderm.mixin.pps.PPSMixin

method), 25
list_file() (python_pachyderm.mixin.pfs.PFSMixin

method), 15
list_job() (python_pachyderm.mixin.pps.PPSMixin

method), 25
list_pipeline() (python_pachyderm.mixin.pps.PPSMixin

method), 26
list_repo() (python_pachyderm.mixin.pfs.PFSMixin

method), 15
list_secret() (python_pachyderm.mixin.pps.PPSMixin

method), 26
list_transaction() (python_pachyderm.mixin.transaction.TransactionMixin

method), 28

M
marker() (python_pachyderm.spout.SpoutManager

method), 34
modify_admins() (python_pachyderm.mixin.auth.AuthMixin

method), 5
modify_cluster_role_binding()

(python_pachyderm.mixin.auth.AuthMixin
method), 5

modify_members() (python_pachyderm.mixin.auth.AuthMixin
method), 5

module
python_pachyderm.client, 29
python_pachyderm.mixin, 1
python_pachyderm.mixin.admin, 1
python_pachyderm.mixin.auth, 2
python_pachyderm.mixin.debug, 7
python_pachyderm.mixin.enterprise, 7
python_pachyderm.mixin.health, 8
python_pachyderm.mixin.pfs, 8
python_pachyderm.mixin.pps, 19
python_pachyderm.mixin.transaction, 27
python_pachyderm.mixin.util, 28
python_pachyderm.mixin.version, 28
python_pachyderm.spout, 33
python_pachyderm.util, 35

N
new_from_config() (python_pachyderm.client.Client

class method), 32
new_from_pachd_address()

(python_pachyderm.client.Client class
method), 32

new_in_cluster() (python_pachyderm.client.Client
class method), 33

P
parse_dict_pipeline_spec() (in module

python_pachyderm.util), 35
parse_json_pipeline_spec() (in module

python_pachyderm.util), 35
PFSFile (class in python_pachyderm.mixin.pfs), 9
PFSMixin (class in python_pachyderm.mixin.pfs), 10
pipeline_inputs() (in module

python_pachyderm.mixin.pps), 27
PPSMixin (class in python_pachyderm.mixin.pps), 19
profile_cpu() (python_pachyderm.mixin.debug.DebugMixin

method), 7
put_file_bytes() (python_pachyderm.mixin.pfs.PFSMixin

method), 15
put_file_client() (python_pachyderm.mixin.pfs.PFSMixin

method), 15
put_file_from_bytes()

(python_pachyderm.mixin.pfs.PutFileClient
method), 17

Index 45

python-pachyderm

put_file_from_bytes()
(python_pachyderm.spout.SpoutCommit
method), 33

put_file_from_fileobj()
(python_pachyderm.mixin.pfs.PutFileClient
method), 18

put_file_from_fileobj()
(python_pachyderm.spout.SpoutCommit
method), 33

put_file_from_fileobj_reqs() (in module
python_pachyderm.mixin.pfs), 19

put_file_from_filepath()
(python_pachyderm.mixin.pfs.PutFileClient
method), 18

put_file_from_iterable_reqs() (in module
python_pachyderm.mixin.pfs), 19

put_file_from_url()
(python_pachyderm.mixin.pfs.PutFileClient
method), 19

put_file_url() (python_pachyderm.mixin.pfs.PFSMixin
method), 15

put_files() (in module python_pachyderm.util), 35
put_marker_from_bytes()

(python_pachyderm.spout.SpoutCommit
method), 34

put_marker_from_fileobj()
(python_pachyderm.spout.SpoutCommit
method), 34

PutFileClient (class in python_pachyderm.mixin.pfs),
17

python_pachyderm.client
module, 29

python_pachyderm.mixin
module, 1

python_pachyderm.mixin.admin
module, 1

python_pachyderm.mixin.auth
module, 2

python_pachyderm.mixin.debug
module, 7

python_pachyderm.mixin.enterprise
module, 7

python_pachyderm.mixin.health
module, 8

python_pachyderm.mixin.pfs
module, 8

python_pachyderm.mixin.pps
module, 19

python_pachyderm.mixin.transaction
module, 27

python_pachyderm.mixin.util
module, 28

python_pachyderm.mixin.version
module, 28

python_pachyderm.spout
module, 33

python_pachyderm.util
module, 35

R
read() (python_pachyderm.mixin.pfs.PFSFile method),

9
renew_tmp_file_set()

(python_pachyderm.mixin.pfs.PFSMixin
method), 16

reqs() (python_pachyderm.mixin.pfs.AtomicOp
method), 8

reqs() (python_pachyderm.mixin.pfs.AtomicPutFileobjOp
method), 9

reqs() (python_pachyderm.mixin.pfs.AtomicPutFilepathOp
method), 9

restart_datum() (python_pachyderm.mixin.pps.PPSMixin
method), 26

restore() (python_pachyderm.mixin.admin.AdminMixin
method), 2

restore_auth_token()
(python_pachyderm.mixin.auth.AuthMixin
method), 6

revoke_auth_token()
(python_pachyderm.mixin.auth.AuthMixin
method), 6

run_cron() (python_pachyderm.mixin.pps.PPSMixin
method), 26

run_pipeline() (python_pachyderm.mixin.pps.PPSMixin
method), 26

S
set_acl() (python_pachyderm.mixin.auth.AuthMixin

method), 6
set_auth_configuration()

(python_pachyderm.mixin.auth.AuthMixin
method), 6

set_groups_for_user()
(python_pachyderm.mixin.auth.AuthMixin
method), 6

set_scope() (python_pachyderm.mixin.auth.AuthMixin
method), 6

SpoutCommit (class in python_pachyderm.spout), 33
SpoutManager (class in python_pachyderm.spout), 34
start_commit() (python_pachyderm.mixin.pfs.PFSMixin

method), 16
start_pipeline() (python_pachyderm.mixin.pps.PPSMixin

method), 27
start_transaction()

(python_pachyderm.mixin.transaction.TransactionMixin
method), 28

stop_job() (python_pachyderm.mixin.pps.PPSMixin
method), 27

46 Index

python-pachyderm

stop_pipeline() (python_pachyderm.mixin.pps.PPSMixin
method), 27

subscribe_commit() (python_pachyderm.mixin.pfs.PFSMixin
method), 17

T
transaction() (python_pachyderm.mixin.transaction.TransactionMixin

method), 28
transaction_from() (in module

python_pachyderm.mixin.transaction), 28
transaction_id (python_pachyderm.client.Client

property), 33
TransactionMixin (class in

python_pachyderm.mixin.transaction), 27

V
VersionMixin (class in

python_pachyderm.mixin.version), 28

W
walk_file() (python_pachyderm.mixin.pfs.PFSMixin

method), 17
who_am_i() (python_pachyderm.mixin.auth.AuthMixin

method), 6

Index 47

	Overview
	python_pachyderm
	Mixins
	Information
	python_pachyderm.mixin.admin
	python_pachyderm.mixin.auth
	python_pachyderm.mixin.debug
	python_pachyderm.mixin.enterprise
	python_pachyderm.mixin.health
	python_pachyderm.mixin.pfs
	python_pachyderm.mixin.pps
	python_pachyderm.mixin.transaction
	python_pachyderm.mixin.util
	python_pachyderm.mixin.version

	Client
	Spout
	Util Helper

	Links
	Indices and tables
	Python Module Index
	Index

